FSU to build 32 tesla magnet at Mag Lab

<p>A boon for physics...

[quote]
The National High Magnetic Field Laboratory has been awarded nearly $3 million to build a novel kind of superconducting magnet that will break records for magnetic field strength, make possible new types of science and save vast amounts of energy and money.</p>

<p>The magnet, funded by a National Science Foundation grant of $2 million and a matching award from The Florida State University of $1 million, is projected to generate a magnetic field of 32 tesla. (Tesla is the scientific unit of measure of magnetic field strength.) That is more than 3,000 times stronger than a typical refrigerator magnet, and about 45 percent more powerful than the strongest superconducting magnets available today.</p>

<p>As impressive as that sounds, it is just the tip of the scientific iceberg. The material that will be used for this magnet, a type of high-temperature superconductor called yttrium barium copper oxide, or YBCO, promises to revolutionize research in high magnetic fields. About 5 miles of YBCO cable will go into the new magnet.</p>

<p>Superconducting magnets have been powering hospital MRI machines for decades (at about 1 to 3 tesla) and are commonly used in high-field research. They are valuable in part because they are made with special superconducting materials that conduct electricity without any friction, and therefore use very little electricity. Non-superconducting electromagnets, called resistive magnets, consume massive amounts of electricity. At the magnet lab, the average cost to run a resistive magnet is $774 per hour — 40 times more than a 20-tesla superconducting magnet.
...
To have 32 tesla, at such high quality, for such a bargain price will be nothing less than a boon for physics, said Stephen Julian, a University of Toronto physicist who sits on the magnet lab's External Advisory Board and is a co-principal investigator on the grant.</p>

<p>"This magnet opens up new possibilities for measurements that we have previously only dreamed of," Julian said. "With these new magnets, researchers will be able to stay at these very high magnetic fields for as long as they like. This will dramatically increase the quality of data for many measurements. We can look forward to breakthroughs in biomedical magnetic resonance imaging, studies of protein structure, semiconductor physics and the physics of metals."

[/quote]

For the rest of the article, see: Florida</a> State News and Events</p>