<p>Please explain in detail how you got the problems you answered. Cramming for Math2c :(.</p>
<p>If f: (x,y) -> (x + 2y, y) for every pair (x,y) in the plane, for what points
(x,y) is it true that (x,y) -> (x,y)?</p>
<p>(A) set of points (x,y) such that x=0
(B) set of points (x,y) such that y=0
(C) set of points (x,y) such that y=1
(D) (0,0) only
(E) (-1,1) only</p>
<p>If f(x) = ax^2 + bx + c for all real numbers x and if f(0) = 1 and f(1) = 2, then a+b = </p>
<p>(A) -2
(B) -1
(C) 0
(D) 1
(E) 2</p>
<p>If f(2x+1) = 2x-1 for all real numbers x, then f(x) = </p>
<p>(A) -x+1
(B) x-1
(C) x-2
(D) 2x-1
(E) (1/2)x - 1</p>
<p>If 3x-4y+7 = 0 and 2y-x^2=0 for x >=0, then x=?</p>
<p>(A) 1.27
(B) 2.07
(C) 2.77
(D) 4.15
(E) 5.53</p>
<p>If f(x) = log2X for x > 0, then f^-1(x) = </p>
<p>(A) 2^x
(B) x^2
(C) x/2
(D) 2/x
(E) logx2</p>