<p>int(1<em>74/pi - e^{pi</em>i}*ln(epsilon)) +infinity = 0 + 5000000000000000000000000000000000i * -i + 5 * 10^32 + 100/pi - 26/pi + infinity - d(1/2 infinity) -0.0000000000000000000000001) / 0^0 = 2^(aleph_0) > 2^i</p>
<p>closing parentheses was missing on integral.</p>
<p>{i infinity}+C= 0 + 5000000000000000000000000000000000i * -i + 5 * 10^32 + 100/pi - 26/pi + infinity - d(1/2 infinity) -0.0000000000000000000000001) / 0^0 = 2^(aleph_0) > 2^i</p>
<p>{i infinity}+C= 0 + 5000000000000000000000000000000000i * -i + 5 * 10^32 + 100/pi - 26/pi + infinity - d(1/2 infinity) -0.0000000000000000000000001) / 0^0 = 2^(aleph_0) > 2^i + ln(13)*cis(-i^e+pi)</p>
<p>Now divide the lot by 0, and use L’Hopital’s Rule. :D</p>
MattNC
24
<p>I’m going to need L’Hopital due to a brain tumor if I actually attempt this.</p>
<p>{i infinity}+C= 0 + 5000000000000000000000000000000000i * -i + 5 * 10^32 + 100/pi - 26/pi + infinity - d(1/2 infinity) -0.0000000000000000000000001) / 0^0 = 2^(aleph_0) > 2^i + ln(13)*cis(-i^e+pi)/0</p>
<p>I divided by 0…not the whole “lot” though :)</p>
<p>{i infinity}+C= 0 + 5000000000000000000000000000000000i * -i + 5 * 10^32 + 100/pi - 26/pi + infinity - d(1/2 infinity) -0.0000000000000000000000001) / 0^0 = 2^(aleph_0) > 2^i + ln(13)*cis(-i^e+pi)/0^0</p>
MattNC
27
<p>Answer is 1. I win.</p>
<p>
Lol, how? This thread is absolute rot.</p>