FSU study unlocks stem cell, DNA secrets, advances therapy

<p>
[quote]
In a groundbreaking study led by an eminent molecular biologist at Florida State University, researchers have discovered that as embryonic stem cells turn into different cell types, there are dramatic corresponding changes to the order in which DNA is replicated and reorganized.</p>

<p>The findings bridge a critical knowledge gap for stem cell biologists, enabling them to better understand the enormously complex process by which DNA is repackaged during differentiation -- when embryonic stem cells, jacks of all cellular trades, lose their anything-goes attitude and become masters of specialized functions.</p>

<p>As a result, scientists now are one significant step closer to the central goal of stem cell therapy, which is to successfully convert adult tissue back to an embryo-like state so that it can be used to regenerate or replace damaged tissue. Such therapies hold out hope of treatments or cures for cancer, Parkinson's disease, multiple sclerosis, spinal cord injuries and a host of other devastating disorders.</p>

<p>Using mouse and human embryonic stem cells, FSU researchers employed advanced imaging techniques and state-of-the-art genomics technology to demonstrate, with unprecedented resolution along long stretches of chromosomes, which sequences are replicated first, and which occur later in the process of differentiation.</p>

<p>"Understanding how replication works during embryonic stem cell differentiation gives us a molecular handle on how information is packaged in different types of cells in manners characteristic to each cell type," said David M. Gilbert, the study's principal investigator. "That handle will help us reverse the process in order to engineer different types of cells for use in disease therapies." Internationally renowned for his body of cutting-edge research on chromosomal structure and reproduction that he began as a doctoral student at Stanford University in the 1980s, Gilbert joined the FSU faculty and was appointed as the first J. Herbert Taylor Distinguished Professor of Molecular Biology in 2006.</p>

<p>Results from the FSU study, which includes contributions from researchers at three other institutions, are described in a paper published in the October 7, 2008, edition of PLoS (Public Library of Science) Biology, a peer-reviewed journal that showcases biological science research of exceptional significance. So prodigious were the findings that the current paper -- "Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation" -- is focused solely on results observed in the mouse embryonic stems cells; data on the human cells will be detailed in a future report...

[/quote]

Source: FSU.com</a> :: Landmark FSU study unlocks stem cell, DNA secrets, advances therapy</p>

<p>A nice accomplishment.</p>