<p>I don't know how to use math notations on here, so bear with me. This is an easier method than the traditional way. </p>
<p>Let SS be the integral sign:</p>
<p>EXAMPLE #1:</p>
<p>SS (x^2)sinx dx</p>
<p>let u = x^2
let v' = sinx</p>
<p>u: x^2, 2x, 2, 0 (I kept taking the derivative)</p>
<p>v': sinx, -cosx, -sinx, cosx (I kept taking the integral)</p>
<p>So now the answer is:</p>
<p>SS (x^2)sinx dx = -x^2cosx+2xsinx+2cosx+C</p>
<p>EXAMPLE #2:</p>
<p>SS lnx dx</p>
<p>let u = lnx
let v' = 1 (since there are nothing else to set as v', we will always pick 1)</p>
<p>u: lnx, 1/x</p>
<p>v': 1, x</p>
<p>So now: SS lnx dx = xlnx - SS 1 dx = xlnx - x + C</p>
<p>EXAMPLE #3:</p>
<p>SS e^2xcos3x dx</p>
<p>let u = e^2x
let v' = cos3x</p>
<p>u: e^2x, -(2e^2x), 4e^2x</p>
<p>v': cos3x, 1/3(sin3x), -1/9(cos3x)</p>
<p>So now: SS e^2xcos3x dx = 1/3e^2xsin3x+2/9e^2xcos3x - 4/9 SSe^2xcos3x dx</p>
<pre><code> = 13/9 SS e^2xcos3x dx = e^2x/9(3sinx+2cos3x)
</code></pre>
<p>FINAL ANSWER : SS e^2xcos3x dx = e^2x/13(3sin3x+2cos3x)+C</p>
<p>Any questions, just let me know ;)</p>