UMN gets $28 million semiconductor research grant

<p>University</a> of Minnesota awarded $28 million grant to lead development of next-generation microelectronics : UMNews : University of Minnesota</p>

<p>extra notes found on internet relating to this topic: </p>

<p>C-SPIN’s director Jian-Ping Wang, an electrical and computer engineering professor at the University of Minnesota, explained that the ability to scale semiconductor technology has led to the information revolution of the past half-century.
“However, today’s semiconductor technology is reaching its fundamental limits in terms of density and power consumption,” he said. “Spin-based logic and memory based on the hybridization of magnetic materials and semiconductors have the potential to create computers that are smaller, faster and more energy-efficient than conventional charge-based systems.”
Spin-based computing has gained considerable interest recently due to advances in a number of areas. It can combine memory and logic at the device and circuit level, thereby leading to much faster operation for data-intensive applications. This is crucial in the information age and includes applications such as searching, sorting, and image recognition.
Especially important is the room temperature spin transport in graphene with high spin injection efficiency, first demonstrated by Kawakami’s group. C-SPIN will help develop the graphene spintronic devices as well as explore new two-dimensional metal dichalcogenides, which are expected to allow for more facile spin manipulation.
“All the work on spin in two-dimensional crystals is at the cutting edge of science and engineering,” Kawakami said.
Research at C-SPIN is expected to have an impact beyond the world of computer science and engineering resulting in advances in nanotechnology, materials science, physics, chemistry, circuit design, and many other fields.</p>