Hi there! Here's a SAT math problem I find it suspicious

<p>If k^2x=kx for every value of x, what are all possible values of k?
A.0 only
B.1 only
C.0 or 1only
D.1 or -1 only
E. 0,1,or -1</p>

<p>Well, the correct answer is C, but I suppose it should be E since -1 is also possible
If -1 is in this formula, then we get the result that x=-x,2x=0,x=0
Why this doesn't work?</p>

<p>If k = -1, then k^2 = 1. So the left side equals x, while the right side equals -x. These will not be equal for all values if x.</p>

<p>Note that the question is asking about values of k, but in your explanation, you were finding a value for x.</p>

<p>You could also divide both sides of the original equation by x, assuming that x does not equal 0. Then k^2 = k. That equation has two solutions, k = 0 or k = 1. And both of those values also work when x = 0.</p>

<p>I sort of get it!
Thanx soooo much.</p>

<p>Oh…</p>

<p>I see ur point,</p>

<p>Again,thanx.</p>

<p>With these kind of problems, plug in the answer choices.</p>