<p>I think example 6 in the "odd and even functions" section might be a typo.</p>
<p>it says "X^4 + y^2 = 10 is an odd rlation because
(-x)^4 + (-y)^2 = x^4 + y^2 = 10. Note that x^4 + y^2 = 10
is both even and odd"</p>
<p>How can a function be both even and odd?
I even searched on Google if it is possible to have a function that is both
even and odd and most people were saying that the only function that could do this
is "f(x) = 0" </p>
<p>if you try f(-x) = (-x)^4 + y^2 = 10 then it just gives you the original answer back
which should mean that the function is even. I have no idea where the book got the "both even and odd" part. someone please explain.</p>
<p>i noticed that too. and i’ve spotted a lot more typos in that same book. it’s really starting to **** me off.</p>
<p>PR and the two official released tests is all you need for an 800.</p>
<p>Barron’s is overkill and I absolutely HATE when people say that “HURR DURR OVERPREPARING IS GOOD.”</p>
<p>No.</p>
<p>Listen man</p>
<p>its not a typo.if it were then in answers it wouldnt be explained same way.</p>
<p>just think, why a circle shouldnt be both even and odd?
Although i dont understand why a hyperbole should also be even and odd,it doesnt matter…just remember…</p>
<p>functions are not both even and odd. relations can be though. relations and functions dont have the same meaning. i found that mistake but then i realized. there are a lot more mistakes through out the book. its kind of annoying</p>
<p>I agree with soostressed; that page didn’t mention anything that they are both function, it said they are both “relation.”</p>
<p>@Soostressed - Where else have you seen more mistakes? I’m not smart at math so it would be nice if you can point it out for me before I mistaken a wrong answer as right. Thanks. :)</p>
<p>@rahulkshah, did you get an 800?</p>
<p>Yeah. </p>
<p>(My CAS calculator helped a lot too. :D)</p>
<p>@lynn ill let you know tomorrow because im going through the whole book tmrw. ill see what i can pull up tomorrow</p>