<p>The question was</p>
<p>What is the period of |tan2x|?</p>
<p>The answer I put was pi/2, the same period as tan2x. You can also graph the function and use a window with x-min ~ -pi and x-max ~ pi</p>
<p>The question was</p>
<p>What is the period of |tan2x|?</p>
<p>The answer I put was pi/2, the same period as tan2x. You can also graph the function and use a window with x-min ~ -pi and x-max ~ pi</p>
<p>i got pi/2 now that i think about it</p>
<p>if the question was abs(tan2x) the period is.. pi/4
isnt it?</p>
<p>if the tquestion was abs(tanx) the period is.. pi/2.. am i right?</p>
<p>The standard deviation question was a pain, but I got D too. I believe the list was 8,10,10,10,10,12</p>
<p>@babeexphat,</p>
<p>The period of |tanx| is the same as the period for tanx because when you flip the negative values over, they do not match the positive side. Graph it to make sure you see what I mean.</p>
<p>no i think the period is just pi for abs(tanx).... ithink</p>
<p>ohhhhh shoot then u guys are right.. is the period for tanx, pi?</p>
<p>That's right.</p>
<p>period is pi/2</p>
<p>you find the period of a tangent function through (pi/b) where b is the multiplier. This can also be verified graphically.</p>
<p>Can we dredge up and roll over any more, or are we done?</p>
<p>UGH 2 wrong so far.... i can only get 2 more wrong for 800 :( this sucks</p>
<p>Was there an answer for the abs(tan(2x)) that said TWO/PI instead of PI/TWO.</p>
<p>I maybe have been tempted to do that. I know I put one or the other, b/c I know that tan(2x) is either 2/pi or pi/2, but I hope I put pi/2.</p>
<p>How about the f(x)=-f(x) or something. What does it have to be reflected on?
I put y=x hope its right.</p>
<p>I think we went over most of the tricky ones already though.</p>
<p>thats what i put</p>
<p>omg for the question that was like
f(x)=x^2-1
I. f(x)=f(-x)
II. f(x)=-f(x)
III. f(-1)<f(0)</p>
<p>its I only right?</p>
<p>It was f-inverse = f what line or something which was y=x</p>
<ul>
<li>
I and III</li>
</ul>
<p>the "f(x)=f-1(x) what does it have to be reflected on?"
I put reflected about the origin... cuz thats what inverses are</p>
<p>Yes, I is the only true one. III is just wrong and II could only be true of f(x)=0</p>
<p>About the inverse question, inverses are not reflections over the origin. A reflection over the origin would be -f(-x) which is what an odd function is. An inverse functions switches x and y so every point (x1, y1) on the original function is now (y1, x1) on the inverse function.</p>
<p>The midpoint of the line connecting these two points is</p>
<p>[(x1 + y1)/2, (y1 + x1)/2]</p>
<p>which is on the line y=x so y=x is equidistant from every corresponding pair of points on the inverse and original functions. Thus, the inverse is a reflection over y=x</p>
<p>i got I only, skp i think ur thinking of the other one</p>
<p>sOO many people got I & III...
ugh III was definitely wrong right?</p>
<p>So what is f(x)=-f(x) reflected on?</p>
<p>Was "the origin" even an answer choice? Is it y=x or the origin? or are they the same thing?!</p>